1. (10 points) Let $\{0\} \neq R$ be a commutative ring and $a \in R$. Show $R \cong R[t]/(t-a)R[t]$.

Solution: Consider the map $ev_a : R[t] \to R, ev_a(f) = f(a)$ (2pts). This is a homomorphism (2 pts) and it is surjective since $a \in R$ (2 pts). Its kernel is (t-a)R[t] (2 pts). This implies the assertion (2 pts).

2. (10 points) Let R be an integral ring and $f, g \in R$. Assume f is a prime such that $f \nmid g$. Show $fR \cap gR = fgR$.

Solution: " \subset ": $a \in fR \cap gR \implies fh = a = gk$ for some $h, k \in R$ (1 pt). Then we have $f \mid gk$ and since f is prime, $f \mid g$ or $f \mid k$ (3 pts). By assumption we have $f \mid k$ (2pts); thus a = fgk' for some $k' \in R$ (1 pt). " \supset ": trivial (3 pts).

- 3. Set $f := \frac{1}{3}t^4 2t^3 t 1 \in \mathbb{Q}[t].$
 - (a) (6 points) Show that f is irreducible in $\mathbb{Q}[t]$.

Solution: Consider $g := 3f \in \mathbb{Z}[t]$ (2 pts). g is irreducible by Eisenstein with p = 3 (3 pts). Since 3 is a unit in \mathbb{Q} this shows the assertion (1 pt).

(b) (4 points) Show that
$$K := \mathbb{Q}[t]_{f\mathbb{Q}[t]}$$
 is isomorphic to a subfield of \mathbb{R} .

Solution: We have f(0) < 0 and for $\alpha \in \mathbb{R}$ large we get $f(\alpha) > 0$ (2 pts). Since a polynomial function $\tilde{f} : \mathbb{R} \to \mathbb{R}$ is continuus, this implies f has a real root (1 pt). Let α be such a real root. This implies $ev_{\alpha} : \mathbb{Q}[t] \to \mathbb{R}$ has an image isomorphic to K (1 pt).

4. Consider the homomorphism

$$\begin{array}{rcl} \operatorname{ev}_{\frac{1}{2}}: & \mathbb{Z}[t] & \longrightarrow & \mathbb{Q} \\ & f & \longmapsto & f(\frac{1}{2}). \end{array}$$

(a) (6 points) Show $\mathbb{Z}\left[\frac{1}{2}\right] := \operatorname{Im}\left(\operatorname{ev}_{\frac{1}{2}}\right) = \left\{\frac{a}{2^n} \mid a \in \mathbb{Z}, n \in \mathbb{N}_0\right\}.$

(

Solution: " \subset ": Let $\sum^{n} f_{i}t^{i}f \in \mathbb{Z}[t]$. Then $ev_{\frac{1}{2}}(f) = \frac{2^{n} \cdot f(\frac{1}{2})}{2^{n}}$, where $2^{n} \cdot f(\frac{1}{2}) \in \mathbb{Z}$ (3 pts). " \supset ": We have $\frac{a}{2^{n}} = ev_{\frac{1}{2}}(at^{n})$ (3 pts).

(b) (8 points) Show
$$\mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$$
 is a principal ideal ring.
Hint: Show for an ideal $I \subset \mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$: $I \cap \mathbb{Z} = a\mathbb{Z}$ for some $a \in \mathbb{Z}$ and conclude $I = a\mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$.

Solution: Let $I \subset R$ be an ideal. Then $I \cap \mathbb{Z} \subset \mathbb{Z}$ is an ideal (2 pts). \mathbb{Z} is a PIR. Thus $I \cap \mathbb{Z} = a\mathbb{Z}$ for some integer a (2 pts). Let $\frac{b}{2^n} \in I$. Then $b \in I \cap \mathbb{Z}$ and b = ab' for some $b' \in \mathbb{Z}$ (2 pts). Thus $b \in a\mathbb{Z} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (1 pt). The other inclusion is trivial (1 pt).

5. (a) (8 points) Construct a field \mathbb{F}_{32} with 32 elements.

Solution: Consider the polynomial $f := t^5 + t^3 + t^2 + t + 1 \in \mathbb{F}_2[t]$. f is irreducible in $\mathbb{F}_2[t]$ since it has no roots and is not divisible by $t^2 + t + 1$ (4 pts). Therefore, $\mathbb{F}_{32} := \mathbb{F}_2[t]/(f)$ is a field with 32 elements (4 pts).

(b) (6 points) Let $\psi : \mathbb{Z} \to \mathbb{F}_{32}$ be a homomorphism. Find an element $\alpha \in \mathbb{F}_{32} \setminus \psi(\mathbb{Z})$.

Solution: There exists a unique hom. $\psi : \mathbb{Z} \to \mathbb{F}_{32}$ (2 pts). The image of this unique homomorphism is $\mathbb{F}_2 \subset \mathbb{F}_{32}$ (2 pts). Therefore, $\alpha := \overline{t}$ is not in the image of ψ (2 pts).

6. (12 points) Let \mathbb{F}_q be a finite field with q > 2 elements. Compute $\prod_{\alpha \in \mathbb{F}_q^*} \alpha$ and $\sum_{\alpha \in \mathbb{F}_q^*} \alpha$. Hint: Try to factor $t^{q-1} - 1 \in \mathbb{F}_q[t]$.

Solution: \mathbb{F}_q^* is a group with q-1 elements (2 pts). Therefore, $\alpha^{q-1} = 1$ for $\alpha \in \mathbb{F}_q^*$ and $t^{q-1} - 1 = \prod_{\alpha \in \mathbb{F}_q^*} (t-\alpha)$ (4 pts). Comparing coefficients yields $\prod_{\alpha \in \mathbb{F}_q^*} \alpha = -1$ (3 pts) and $\sum_{\alpha \in \mathbb{F}_q^*} \alpha = 0$ (3 pts).

- 7. Let $R \subset \mathbb{C}$ be a subring.
 - (a) (6 points) Show: \mathbb{Z} is a subring of R.

Solution: Since $\operatorname{char}(R) = \operatorname{char}(\mathbb{C}) = 0$ (2 pts) we have $\operatorname{ker}(\mathbb{Z} \to R) = \{0\}$ (2 pts) implying injectivity of this homomorphism (2 pts).

(b) (8 points) Let $a, b \in \mathbb{Z}$. Show: If $d := \gcd(a, b) \in \mathbb{Z}$, then d is a greatest common divisor of a and b in R.

Solution: Need to show: If δ is a common divisor of a, b in R, then $\delta \mid d$ (1 pt). Since \mathbb{Z} is a PIR (1 pt), we have d = ax + by for some $x, y \in Z$ (1 pt). Let $\delta \in R$ be a common divisor of a and b (1 pt). Then we can write $d = \delta \alpha x + \delta \beta y = \delta(\alpha x + \beta y)$ for some $\alpha, \beta \in R$ (2 pts). This implies the assertion (2 pts).

- 8. Let $f_1, f_2, f_3, f_4 \in \mathbb{F}_2[t]$ be the degree two polynomials over \mathbb{F}_2 . Define $R_i = \mathbb{F}_2[t] / f_i \mathbb{F}_2[t]$ for $i = 1, \ldots, 4$.
 - (a) (8 points) Which of the rings R_i are isomorphic?

Solution: $f_1 := t^2 + t + 1$, $f_2 := t(t+1)$, $f_3 := t^3$, $f_4 := (t+1)^2$. f_1 is irreducible; thus R_1 is a field (1 pt). $1 \in R_2$ is the only unit (1 pt). R_3 , R_4 have both two units (1 pt). Thus, only R_3 and R_4 can be isomorphic (1 pt). Such an isomorphism is uniquely determined by the image of \bar{t} and it has to send nilpotent elements to nilpotent elements. Thus, the only possible isomorphism fulfills $\bar{t} \mapsto \bar{t} + \bar{1}$ (2 pt). This indeed is an isomorphism of R_3 and R_4 (2 pts).

(b) (8 points) Show R_i is not isomorphic to $\mathbb{Z}_{4\mathbb{Z}}$ for $i = 1, \ldots, 4$.

Solution: We have $\operatorname{char}(R_i) = 2$ (3 pts) and $\operatorname{char}(\mathbb{Z}/4\mathbb{Z}) = 4$ (1 pt). Therefore, non of the R_i is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ (4 pts).