1. (10 points) Let $\{0\} \neq R$ be a commutative ring and $a \in R$. Show $R \cong R[t] /(t-a) R[t]$.

Solution: Consider the map $e v_{a}: R[t] \rightarrow R, e v_{a}(f)=f(a)(2 \mathrm{pts})$. This is a homomorphism (2 pts) and it is surjective since $a \in R$ (2 pts). Its kernel is $(t-a) R[t]$ (2 pts). This implies the assertion (2 pts).
2. (10 points) Let R be an integral ring and $f, g \in R$. Assume f is a prime such that $f \nmid g$. Show $f R \cap g R=f g R$.

Solution: " \subset ": $a \in f R \cap g R \Longrightarrow f h=a=g k$ for some $h, k \in R$ (1 pt). Then we have $f \mid g k$ and since f is prime, $f \mid g$ or $f \mid k$ (3 pts). By assumption we have $f \mid k(2 \mathrm{pts})$; thus $a=f g k^{\prime}$ for some $k^{\prime} \in R(1 \mathrm{pt})$.
" \supset ": trivial (3 pts).
3. Set $f:=\frac{1}{3} t^{4}-2 t^{3}-t-1 \in \mathbb{Q}[t]$.
(a) (6 points) Show that f is irreducible in $\mathbb{Q}[t]$.

Solution: Consider $g:=3 f \in \mathbb{Z}[t]$ (2 pts). g is irreducible by Eisenstein with $p=3$ (3 pts). Since 3 is a unit in \mathbb{Q} this shows the assertion (1 pt).
(b) (4 points) Show that $K:=\mathbb{Q}[t] / f \mathbb{Q}[t]$ is isomorphic to a subfield of \mathbb{R}.

Solution: We have $f(0)<0$ and for $\alpha \in \mathbb{R}$ large we get $f(\alpha)>0(2 \mathrm{pts})$. Since a polynomial function $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}$ is continuus, this implies f has a real root (1 pt). Let α be such a real root. This implies $e v_{\alpha}: \mathbb{Q}[t] \rightarrow \mathbb{R}$ has an image isomorphic to $K(1$ pt).
4. Consider the homomorphism

$$
\begin{aligned}
\mathrm{ev}_{\frac{1}{2}}: \mathbb{Z}[t] & \longrightarrow \mathbb{Q} \\
f & \longmapsto f\left(\frac{1}{2}\right) .
\end{aligned}
$$

(a) (6 points) Show $\mathbb{Z}\left[\frac{1}{2}\right]:=\operatorname{Im}\left(\operatorname{ev}_{\frac{1}{2}}\right)=\left\{\left.\frac{a}{2^{n}} \right\rvert\, a \in \mathbb{Z}, n \in \mathbb{N}_{0}\right\}$.

Solution: " \subset ": Let $\sum^{n} f_{i} t^{i} f \in \mathbb{Z}[t]$. Then $e v_{\frac{1}{2}}(f)=\frac{2^{n} \cdot f\left(\frac{1}{2}\right)}{2^{n}}$, where $2^{n} \cdot f\left(\frac{1}{2}\right) \in \mathbb{Z}(3$ pts).
$" \supset ":$ We have $\frac{a}{2^{n}}=e v_{\frac{1}{2}}\left(a t^{n}\right)(3 \mathrm{pts})$.
(b) (8 points) Show $\mathbb{Z}\left[\frac{1}{2}\right]$ is a principal ideal ring.

Hint: Show for an ideal $I \subset \mathbb{Z}\left[\frac{1}{2}\right]: I \cap \mathbb{Z}=a \mathbb{Z}$ for some $a \in \mathbb{Z}$ and conclude $I=a \mathbb{Z}\left[\frac{1}{2}\right]$.

Solution: Let $I \subset R$ be an ideal. Then $I \cap \mathbb{Z} \subset \mathbb{Z}$ is an ideal (2 pts). \mathbb{Z} is a PIR. Thus $I \cap \mathbb{Z}=a \mathbb{Z}$ for some integer $a(2 \mathrm{pts})$. Let $\frac{b}{2^{n}} \in I$. Then $b \in I \cap \mathbb{Z}$ and $b=a b^{\prime}$ for some $b^{\prime} \in \mathbb{Z}(2 \mathrm{pts})$. Thus $b \in a \mathbb{Z}\left[\frac{1}{2}\right](1 \mathrm{pt})$. The other inclusion is trivial (1 pt).
5. (a) (8 points) Construct a field \mathbb{F}_{32} with 32 elements.

Solution: Consider the polynomial $f:=t^{5}+t^{3}+t^{2}+t+1 \in \mathbb{F}_{2}[t] . f$ is irreducible in $\mathbb{F}_{2}[t]$ since it has no roots and is not divisible by $t^{2}+t+1$ (4 pts). Therefore, $\mathbb{F}_{32}:=\mathbb{F}_{2}[t] /(f)$ is a field with 32 elements (4 pts).
(b) (6 points) Let $\psi: \mathbb{Z} \rightarrow \mathbb{F}_{32}$ be a homomorphism. Find an element $\alpha \in \mathbb{F}_{32} \backslash \psi(\mathbb{Z})$.

Solution: There exists a unique hom. $\psi: \mathbb{Z} \rightarrow \mathbb{F}_{32}(2 \mathrm{pts})$. The image of this unique homomorphism is $\mathbb{F}_{2} \subset \mathbb{F}_{32}(2 \mathrm{pts})$. Therefore, $\alpha:=\bar{t}$ is not in the image of $\psi(2 \mathrm{pts})$.
6. (12 points) Let \mathbb{F}_{q} be a finite field with $q>2$ elements. Compute $\prod_{\alpha \in \mathbb{F}_{q}^{*}} \alpha$ and $\sum_{\alpha \in \mathbb{F}_{q}^{*}} \alpha$. Hint: Try to factor $t^{q-1}-1 \in \mathbb{F}_{q}[t]$.

Solution: \mathbb{F}_{q}^{*} is a group with $q-1$ elements (2 pts). Therefore, $\alpha^{q-1}=1$ for $\alpha \in \mathbb{F}_{q}^{*}$ and $t^{q-1}-1=\prod_{\alpha \in \mathbb{F}_{q}^{*}}(t-\alpha)(4 \mathrm{pts})$. Comparing coefficients yields $\prod_{\alpha \in \mathbb{F}_{q}^{*}} \alpha=-1(3 \mathrm{pts})$ and $\sum_{\alpha \in \mathbb{F}_{q}^{*}} \alpha=0(3 \mathrm{pts})$.
7. Let $R \subset \mathbb{C}$ be a subring.
(a) (6 points) Show: \mathbb{Z} is a subring of R.

Solution: Since $\operatorname{char}(R)=\operatorname{char}(\mathbb{C})=0(2 \mathrm{pts})$ we have $\operatorname{ker}(\mathbb{Z} \rightarrow R)=\{0\}(2 \mathrm{pts})$ implying injectivity of this homomorphism (2 pts).
(b) (8 points) Let $a, b \in \mathbb{Z}$. Show: If $d:=\operatorname{gcd}(a, b) \in \mathbb{Z}$, then d is a greatest common divisor of a and b in R.

Solution: Need to show: If δ is a common divisor of a, b in R, then $\delta \mid d(1 \mathrm{pt})$. Since \mathbb{Z} is a PIR (1 pt), we have $d=a x+b y$ for some $x, y \in Z(1 \mathrm{pt})$. Let $\delta \in R$ be a common divisor of a and $b(1 \mathrm{pt})$. Then we can write $d=\delta \alpha x+\delta \beta y=\delta(\alpha x+\beta y)$ for some $\alpha, \beta \in R$ (2 pts). This implies the assertion (2 pts).
8. Let $f_{1}, f_{2}, f_{3}, f_{4} \in \mathbb{F}_{2}[t]$ be the degree two polynomials over \mathbb{F}_{2}. Define $R_{i}=\mathbb{F}_{2}[t] / f_{i} \mathbb{F}_{2}[t]$ for $i=1, \ldots, 4$.
(a) (8 points) Which of the rings R_{i} are isomorphic?

Solution: $f_{1}:=t^{2}+t+1, f_{2}:=t(t+1), f_{3}:=t^{3}, f_{4}:=(t+1)^{2} . f_{1}$ is irreducible; thus R_{1} is a field (1 pt). $1 \in R_{2}$ is the only unit (1 pt). R_{3}, R_{4} have both two units (1 pt). Thus, only R_{3} and R_{4} can be isomorphic (1 pt). Such an isomorphism is uniquely determined by the image of \bar{t} and it has to send nilpotent elements to nilpotent elements. Thus, the only possible isomorphism fulfills $\bar{t} \mapsto \overline{t+1}(2 \mathrm{pt})$. This indeed is an isomorphism of R_{3} and $R_{4}(2 \mathrm{pts})$.
(b) (8 points) Show R_{i} is not isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ for $i=1, \ldots, 4$.

Solution: We have $\operatorname{char}\left(R_{i}\right)=2(3 \mathrm{pts})$ and $\operatorname{char}(\mathbb{Z} / 4 \mathbb{Z})=4(1 \mathrm{pt})$. Therefore, non of the R_{i} is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ (4 pts).

